5G Transport Network Blueprint and Its Requirement Analysis for Dense Urban Scenarios

Ilker Demirkol1,2, Daniel Camps2, Jens Bartelt3, Jim Zou4

1Universitat Politècnica de Catalunya, Spain, ilker.demirkol@entel.upc.edu
22CAT Foundation, Spain
3Technische Universität Dresden, Germany
4ADVA Optical Networking SE, Germany

Abstract—In this paper, we provide a quantitative evaluation of the dimensioning and deployment aspects of the 5G-XHaul transport architecture in a representative European city. In particular, we select an example Dense Urban City scenario based on the city of Barcelona, and illustrate how the 5G-XHaul architecture can be deployed in that environment. Building on the case of Barcelona, we discuss physical deployment aspects, such as the best locations to deploy small cells, how many compute facilities should be scattered throughout the city, or where the control plane functions should be deployed. In addition, we provide a quantitative evaluation of the 5G-XHaul deployment in Barcelona, including the bandwidth required at the different segments of the architecture, i.e. the wireless segment, the WDM-PON access network, and the TSON metro network. We also evaluate control plane aspects, such as the number of 5G-XHaul SDN controllers required for a city like Barcelona.

Keywords—5G Transport Network, Network capacity planning; deployment; topology.

I. INTRODUCTION

5G-XHaul \cite{1} is a European project working on the definition of converged Fronthaul (FH) and Backhaul (BH) networks for future 5G mobile networks. For this purpose 5G-XHaul defined in \cite{2} a logical transport architecture that integrates various wireless and optical technologies under a common SDN control plane.

In this paper we study how to instantiate the 5G-XHaul architecture on a physical deployment, by defining the network elements of the 5G-XHaul system, the physical network architecture, and the network topology. The objectives of the proposed 5G-XHaul network blueprint are to devise physical deployment strategies, which can be used to i) derive the throughput requirements on different network segments and on corresponding network technologies, and ii) generate feasible topologies for network performance evaluations, e.g. calculate the signaling overhead of possible SDN solutions or evaluate failover scenarios. The main contribution of this paper is an evaluation of the derived 5G-XHaul transport network blueprint on a dense urban scenario, based on the city of Barcelona, designed to address the extreme Mobile Broadband (xMBB) use case defined in \cite{3}. In particular we evaluate the bandwidth requirements in the wireless and optical segments of the transport network, and dimension the SDN control plane.

This paper is organized as follows. Section II introduces the 5G-XHaul network elements and physical architecture. Section III describes the deployment of the 5G-XHaul elements in Barcelona. Section IV and V dimension respectively the transport network data plane and control plane. Finally, Section VI summarizes and concludes the paper.

II. 5G-XHAUL PHYSICAL ARCHITECTURE

Fig. 1 illustrates a 5G-XHaul physical network architecture, where the wavelength division multiplexing passive optical network (WDM-PON) is designed to deliver a wavelength-based point-to-point (P2P) connectivity between cell sites and central offices. Each optical network unit (OUN) is attached to a Macro Cell site, and a dedicated wavelength is multiplexed/demultiplexed at the remote node (RN). The RNs connect to a WDM-PON Optical Line Terminal (OLT) at the 5G-XHaul Central Office (5GX-CO), which hosts compute resources and may host BaseBand Units (BBUs). 5GX-COs are connected to each other through a Time Shared Optical Network (TSON), defined in \cite{4}. A WDM-PON OLT may interface a TSON edge node as defined in \cite{2}. The TSON network facilitates the connection of the 5G-XHaul metro network to the operator’s core network again through a TSON edge node. Small cell sites can be wirelessly connected to a Macro Cell Site or alternatively they can have fibre attachment points (WDM-PON ONUs). The wireless connection technologies considered in 5G-XHaul are Sub-6 GHz or mmWave for BH and mmWave for FH. In addition to the 5GX-CO, 5G-XHaul also contemplates the availability of compute resources in Edge Clouds, depicted in Fig. 1, which are located close to the wireless infrastructure.

Each WDM-PON channel is assigned one pair of wavelengths for the downlink and uplink, respectively. Given the fact that in general the downlink throughput is much higher than the uplink, the required number of ONUs at a Macro Cell or Small Cell sites mostly depends on the aggregated ingress capacity at each cell. Each ONU operates on a dedicated optical channel of at least 10 Gbps1, and multiple ONUs can be installed in a single cell site to serve the aggregated capacity. On the other hand, if the total ingress capacity to the cell site is smaller than 10 Gbps, a 10GbE Ethernet switch can be utilized.

1 5G-Xhaul targets the design of a WDM-PON solution with 25Gbps per wavelength.
between the ONU and multiple radio equipment to aggregate various cells on a single ONU, thus increasing efficiency.

5G-XHaul supports C-RAN by deploying physical or virtual BBUs in the 5GX-CO that serve the Macro Cell sites connected to that 5GX-CO through WDM-PON. Alternatively, the BBUs can also sit in a more centralized location (e.g. a remote 5GX-CO), and the FH connections can be relayed through TSON. Notice that the latter approach enables larger pooling gains. Thanks to its multi-protocol support, TSON also relays the BH traffic generated after BBU processing until the operator’s core network. In the physical architecture depicted in Fig. 1 it is assumed that a subset of 5GX-COs have connectivity to the core network. TSON is in charge of creating dynamic connections in the optical domain to balance the access traffic against the subset of 5GX-COs connected to the operator core transport network. The interested reader is referred to [2] for the details of the FH/BH support in TSON and WDM-PON.

III. 5G-XHAUL NETWORK TOPOLOGY IN A DENSE URBAN SCENARIO

We start dimensioning the wireless access choosing the Barcelona city centre as a target location, in particular the Eixample neighborhood consisting of square shaped blocks that can be used to visualize the deployment of different network elements (c.f. Fig. 2). In our study we will take this reference area in Barcelona, and dimension the 5G-XHaul transport network as if the whole of Barcelona would be covered using a similar approach. Notice however that this represents a worst-case analysis, since in practice a city like Barcelona contains areas with reduced demand for mobile data. We consider this worst-case scenario because realistic future 5G traffic demands are difficult to derive at this stage, and a worst-case analysis can help drive strategic investment decisions.

To derive a realistic topology of the cell sites, we first consult the inter-site distance (ISD) predictions of prior work for Macro Cell (MC) sites and Small Cell (SC) Sites [2],[3],[4] in dense urban scenarios for 5G. For example in [2] NGMN provides a projection of 200 m Macro ISD, and 3-10 Small Cells per Macro Cell. In the Eixample neighborhood (c.f. Fig. 2), each block edge is 133.3 m, and hence, 1.5 blocks correspond to an ISD of 200 m. Further, based on the constraints defined by METIS-II (MC-SC ISD>55 m) in [5], we assume 3 Small Cells (unless there is a Macro Cell deployed at the target edge points) at each edge, with 70 m MC-SC and SC-SC ISD. This deployment is illustrated in Fig. 2, which results in 4-8 SCs per MC complying with NGMN projections [2].

5G-XHaul assumes three different types of SCs regarding their BH/FH connection: 1) SC+WDM-PON: SC has an ONU and is connected to the OLT in the 5GX-CO, 2) SC+mmWave: SC in a lamppost connected to a mmWave node, and 3) SC+Sub-6 Access/Backhaul: The SC can also be connected to a Sub-6 transport node, which can be used both for access and BH, providing less BH capacity but more potential connections. In addition to these SC types, we consider a single Macro Cell (MC) type, which is the one with the WDM-PON connection. In Fig. 2, an illustrative deployment using these transport technologies is depicted. In addition, the physical wireless BH/FH connections examples are also provided for both wireless technologies considered. Such wireless BH/FH connections are expected to define paths of maximum 1-2 hops until a fibre attachment point. However, the resiliency and the dynamicity of the system is achieved (e.g. cells are switched off for energy cost or interference reductions), through backup paths with more hops as illustrated.

Regarding 5GX-COs, we assume that the Central Offices (COs) that exist in Barcelona today to provide fixed broadband access (xDSL, fibre) can be re-used to serve 5G-XHaul traffic. However, the WDM-PON technology used in 5G-XHaul enables longer reach and thus a reduction on the number of COs is possible. In Section IV we will dimension the 5G-XHaul data plane for a varying number of 5GX-COs.
A. To study the range of 5-100 5GX-COs in our evaluation. Enabling in 5G-XHaul through WDM-PON. Hence we choose operators targeting to reduce the number of 5GX-COs, which is Orange declare 15 [9] and 28 [10] cell site served by each CO of MC sites; this would result in 80-150 5GX-COs. However, public lighting and traffic lights, and which have already been street-level cabinets, which are currently used for controlling an excellent candidate to host Edge Clouds are a multitude of COs or in the Edge Clouds (c.f. Fig. 1). In the case of Barcelona VXLAN [7], and could be deployed in the servers of the 5GX-hypervisor of virtualized IT equipment (like a VTEP in ETN however is software function instantiated in the network elements, for example those depicted in Fig. 2. An ETN however is software function instantiated in the hypervisor of virtualized IT equipment (like a VTEP in VXLAN [7]), and could be deployed in the servers of the 5GX-CO or in the Edge Clouds (c.f. Fig. 1). In the case of Barcelona an excellent candidate to host Edge Clouds are a multitude of street-level cabinets, which are currently used for controlling public lighting and traffic lights, and which have already been used to demonstrate Fog computing applications [FOG-BCN]. Finally the SDN controllers responsible for traffic engineering in the SC layer could also be deployed in the Edge Clouds (cabinets), and the TSON SDN controller in a 5GX-CO. The interested reader is referred to [8] for further detail on the 5G-XHaul deployment scenarios.

IV. DIMENSIONING THE 5G-XHAUL DATA PLANE

For the Barcelona city population of 1.4M inhabitants, distributed in 101.4 km², and assuming the calculated 22.68 Macro sites/km² dense urban scenario density (c.f. Fig. 2), we find ~2,300 Macro sites covering Barcelona along with 9,200 to 18,400 Small Cells, corresponding to 4-8 Small Cells per Macro Cell site. Note that as explained in Section III this corresponds to a worst-case scenario.

Regarding the number of 5GX-COs, several works from Orange declare 15 [9] and 28 [10] cell site served by each CO in operational networks. Applied to Barcelona for the number of MC sites, this would result in 80-150 5GX-COs. However, operators are target to reduce the number of 5GX-COs, which is enabled in 5G-XHaul through WDM-PON. Hence we choose to study the range of 5-100 5GX-COs in our evaluation.

A. Aggregated RAN Traffic Projections

To dimension the transport network we need to assume a traffic model for the 5G RAN, i.e., how much transport traffic is generated per cell. For this, we utilize the study from [11], where we derived aggregated transport traffic requirements to serve a growing number of 5G cells. This study is based on the analysis of the busy hour from an operational LTE network in a dense urban city area, while provisioning the transport network for the 95% demand and considering statistical multiplexing gains. As described in [11], two scenarios are considered: A Low Load Scenario assuming for 5G the same resource utilization levels measured in the LTE network, and a High Load Scenario where the LTE utilization levels are scaled up following NGMN guidelines. Network dimensioning results in this section are given always for both the Low Load and the High Load scenarios. We expect realistic 5G utilizations to lay somewhere between the Low Load and High Load scenarios. The considered LTE traces provide traffic generated per Macro Cell, but our 5G-XHaul reference deployment contains both Macro and Small Cells. Following the Small Cell Forum projections for offload ratios between 56% and 75% for 4 to 10 Small Cells per Macro Cell [12], we assume the 70% of total traffic is generated by Small Cells and 30% by Macro Cell.

Another factor that impacts the transport capacity is the type of RAN functional split, which defines the degree of centralization of baseband processing. Following the recommendations in [11], we evaluate Split B² (before resource mapping) and Split C (above HARQ) due to their dependence on the generated traffic and hence the possibility to exploit statistical multiplexing gains. The transport traffic for Split B only depends on the current air interface load, while the Split C traffic in addition varies with the channel quality of the individual users. In the following evaluations, we only consider Split C for Small Cells, due to the capacity limitations of current and near-future wireless backhaul technologies. This observation is in line with the RAN functional splits considered by other 5G initiatives [13]. As per RAN type, we study the Sub-6 GHz (i.e., 2 GHz) for Macro Cells (MC) and both Sub-6 GHz and mmWave (30 GHz) options for Small Cell (SC) access. Therefore, our evaluation will consider four configurations representing four types of RAN deployments depending on the functional split and frequency used in MCs and SCs:

a. Cg.1: MC – Sub6 (Split C), SC – Sub6 (Split C),
b. Cg.2: MC – Sub6 (Split C), SC – mmWave (Split C)
c. Cg.3: MC – Sub6 (Split B), SC – Sub6 (Split C)
d. Cg.4: MC – Sub6 (Split B), SC – mmWave (Split C)

Finally, it should be noted that our traffic projections are based on downlink traffic only. The experimental LTE traces that were used to derive the projections were highly asymmetric in DL and this is a trend expected to continue in the 5G xMBB service, which will be powered by video and immersive experiences [15]. The interested reader can extrapolate the effect of significant UL traffic ratios by linearly scaling the results provided in this section.

B. Wireless Segment Capacity Provisioning

We evaluate the traffic that would be carried at the wireless
segment connecting SCs and MCs. Table I provides the resulting capacity requirements for the aggregation of SC traffic in our considered scenarios. For the wireless segment, we see that mmWave RAN SCs require ~1.4x transport capacity as Sub6 RAN SCs. In addition, High Load scenario requires almost 4x the traffic of Low Load scenario.

TABLE I. Dimensioning for SC-MC Wireless Links (Gbps)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Cg.1, 3</th>
<th>Cg.2, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Load</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>High Load</td>
<td>11.5</td>
<td>14.8</td>
</tr>
</tbody>
</table>

Recall that we expect realistic 5G utilizations to lay between the Low Load and High Load scenarios. As detailed in [2], current wireless BH/FH technologies support up to 4.6 Gbps transfer rates and are expected to offer in the near future data rates in excess of 20 Gbps, which are sufficient to cover the projections in Table I.

C. WDM-PON Segment Capacity Provisioning

For the WDM-PON segment, we first provide the number of ONUs required per cell site, then we derive the aggregated traffic at each 5GX-CO, which in turn is used to define the number of OLTs required per 5GX-CO. For the sake of simplicity, in these calculations we assume all the MC sites have three sectors, and that the SC traffic backhauled through the MC sites. Thus, we define one cell unit as one MC and its associated SCs (for the purpose of these calculations we assume one MC cell has two SCs associated), and one cell site as the aggregation point of three cell units (i.e., three sectors). In the calculations, two ONU capacities are used: i) 10 Gbps, which is the capacity available through the current technologies, and ii) 25 Gbps, which is the target ONU capacity in 5G-XHaul. Table II depicts the required number of ONUs in each MC cell/site for our four RAN deployments and the High Load utilization scenario. In the Low Load scenario only at maximum one ONU is required regardless of the RAN deployment.

TABLE II. Required Number of ONUs per Cell and Cell Site in High Load Scenario

<table>
<thead>
<tr>
<th>Required ONUs</th>
<th>Cg.1</th>
<th>Cg.2</th>
<th>Cg.3</th>
<th>Cg.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONUs/cell (10 Gbps)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ONUs/site (10 Gbps)</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ONUs/cell (25 Gbps)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ONUs/site (25 Gbps)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Next, we derive the aggregated access traffic at a 5GX-CO, based on the 70%-30% SC-MC traffic split and our four RAN deployments. Fig. 3 shows the calculated traffic per 5GX-CO for varying number of 5GX-COs in Barcelona area, for both Low Load and High Load scenarios.

As seen in Fig. 3 the use of Split B for MCs increases the traffic carried by the WDM-PON significantly. As expected, reducing the number of 5GX-COs within the area increases the aggregated traffic per 5GX-CO. However, this increase is close to be inversely proportional to the decrease in the number of 5GX-COs. This is because for the large numbers of cells being aggregated in our scenario the required data rates scales almost linearly with the mean data rate. For example, reducing the number of 5GX-COs from 100 to 5 (20x reduction) results in traffic increase of between 17.2x and 17.4x.

Fig. 3. Aggregated access traffic per 5GX-CO for Low Load scenario and High Load scenario (narrower bars).

Next, we calculate the number of OLTs required at each 5GX-CO. As each OLT can enable up to 40 individual wavelength channels in the WDM-PON link [2], based on the number of ONUs on each site, we can determine the number of OLTs with respect to the number of 5GX-COs, as shown in Fig. 4. We can see in Fig. 4, that with a denser deployment of 5GX-COs more OLTs are needed. This is because each OLT will have more unused channels if more than 15 5GX-COs are distributed in the area. Thus, from the WDM-PON perspective, it is preferable to use fewer 5GX-COs, which is in line with the OPEX reduction targeted by operators. For the sake of space, Fig. 4 only shows results for a 25 Gbps ONU capacity, but similar trends are observed with 10 Gbps ONU capacity.

Fig. 4. Number of OLTs per 5GX-CO and the total number of OLTs for the target area for maximal capacity of 25 Gbps per ONU.

D. TSON Segment Capacity Provisioning

Next we assume that the TSON nodes form a ring topology, interconnecting the 5GX-COs scattered in Barcelona through
TSON edge nodes. We further assume that a subset of these 5GX-COs connect to the operator’s core transport network, which we call CoreNet-5GX-COs. Hence, the TSON network carries all the access traffic to/from these CoreNet-5GX-COs. We consider two different scenarios: i) Local Processing, where all 5GX-COs have BBUs, and ii) Remote Processing, where only the CoreNet-5GX-COs have BBUs. In case of Local Processing, Split B traffic is processed at the local 5GX-CO, and, therefore, TSON only transports Split C traffic towards the CoreNet-5GX-COs. On the other hand, Remote Processing allows higher BBU pooling gains, by carrying the Split B traffic to the BBU pools at CoreNet-5GX-COs.

In the following, only Cg.3 and Cg.4 (i.e., Split B for MC traffic) are evaluated. However, note that, for Local Processing, Split B traffic is converted to Split C; hence Cg.3 and Cg.4 would give the same results as Cg.1 and Cg.2, respectively, for the Local Processing scenario. The resulting TSON segment transport capacity as a function of the number of CoreNet-5GX-COs, which we vary from 1 to 5, is shown in Fig. 5. As expected, local processing capability, i.e., assuming BBU processing at each 5GX-CO, results in less aggregate traffic for the TSON segment.

In this section we derive how many 5G-XHaul Tier-0 controllers [2] need to be deployed in Barcelona, under the assumptions described in the previous sections. For this purpose, we define a cell site Area Unit (AU) as the geographical area covered by a Macro Cells (MC) and its associated Small Cells (SCs) (c.f. Fig. 2).

In order to dimension the control plane we consider as bottleneck the capacity of the 5G-XHaul Transport Nodes (TNs), in terms of the number of flows that can be kept concurrently in a fast memory, usually a (Ternary) Content-Addressable Memory i.e., CAM/TCAM. A complementary method to dimension the control plane is described in [8].

E. Dimensioning the control plane based on switch capacity

According to [18], typical data-centre switches have embedded TCAMs which can hold between 2K and 10K flow entries. In the context of 5G-XHaul we will consider two scenarios, network elements with 2K TCAM sizes, and with 10K TCAM sizes. Notice that the bottleneck in dimensioning the control plane will be the SCs of each AU, for which is reasonable to assume limited TCAM sizes. In order to derive the number of flows that need to be kept in each network element (TN), it should be noted that the SDN controller needs to guarantee reachability between all the ETNs and IATNs in a given control area (c.f. Section II and [2]). Thus, if there are N ETN+IATN under the SDN controller, up to 4*N*(N-1) unidirectional flows may have to be held in each network element, where 4 corresponds to the number of Traffic Classes considered in 5G-XHaul [14]. Since it is difficult to come up with a specific number of ETNs/IATNs under each SDN controller, we assume that a ratio (0<r<1) of network elements in each AU are ETNs or IATNs. Consequently, if we know the number of ETNs/IATNs in each AU, we can consider that an SDN controller manages the devices of an integer number of AUs and from that derive the total number of ETNs/IATNs in the control area, and the total number of flows to be held in each network element, which is depicted in Fig. 6.
As depicted in Fig. 6 based on the TCAM size and on the ETN/IATN ratio one can derive the maximum number of AUs that under an SDN controller, and from there the total number of SDN controllers to be deployed in Barcelona; under the worst case assumption of the uniform deployment described in Section II. These results are described in Table III. Notice that although the number of controllers is high, controllers can be deployed inside a virtual machine, making the deployment and operation of a high number of instances manageable using standard cloud platforms.

TABLE III. Number of 5G-XHaul Tier-0 Controllers in Barcelona based on Switch Capacity

<table>
<thead>
<tr>
<th>ETN/IATN ratio</th>
<th>TCAM size</th>
<th># AUs</th>
<th># Ctrls BCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>2K</td>
<td>~ 60</td>
<td>~ 39</td>
</tr>
<tr>
<td>0.4</td>
<td>10K</td>
<td>~ 125</td>
<td>~ 19</td>
</tr>
<tr>
<td>0.8</td>
<td>2K</td>
<td>~ 30</td>
<td>~ 19</td>
</tr>
<tr>
<td>0.8</td>
<td>10K</td>
<td>~ 65</td>
<td>~ 36</td>
</tr>
</tbody>
</table>

VI. SUMMARY AND CONCLUSIONS

In this paper, we have provided an analysis of the physical deployment aspects of the 5G-XHaul architecture. Building on the example of Barcelona, we have dimensioned the bandwidth required at different levels of the transport network while considering different 5G RAN deployment implementations featuring multiple functional splits in the SC and MC layers. We have evaluated the bandwidth required at the 5G-XHaul Central Offices, and shown that the WDM-PON and TSON optical technologies developed in 5G-XHaul can be appropriately dimensioned to handle the required traffic. We have also looked at the control plane, and dimensioned the number of SDN controllers that should be deployed in a city like Barcelona. As a result, this paper has illustrated a practical realisation of the 5G-XHaul architecture in a representative European city.

ACKNOWLEDGMENT

The research leading to these results has received funding from the European Union under grant agreements 618098, and 671551 (H2020 5G-XHaul).

REFERENCES

